晶体材料,晶体材料国家重点实验室?

日期:2023-04-03 13:01:09 浏览: 查看评论 加入收藏

各位老铁们,大家好,今天由我来为大家分享晶体材料,以及晶体材料国家重点实验室的相关问题知识,希望对大家有所帮助。如果可以帮助到大家,还望关注搜藏下本站,您的支持是我们更大的动力,谢谢大家了哈,下面我们开始吧!

晶体材料是什么

晶体材料:由结晶物质构成的固体材料。其所含的原子、离子、分子或粒子集团等具有周期性的规则排列。

参考资料:百科

人工晶体是由哪些材料制成的?

人工晶体或称假晶体,也叫作眼内眼镜。多用在白内障手术后,代替摘除的自身混浊晶体。人工晶体材料必须具备以下条件:材料为非水溶性、化学惰性好、稳定性好、无致癌作用、生物相容性好、耐受性好、弹性强度稳定、无膨胀性、无过敏及变态反应、不引起凝血、耐温好、易消毒、易于加工成型、光学性能好、在眼内长期放置而不改变屈光力。人工晶体的襻应尽量轻而柔软,减少对支持组织的压力和损伤。目前,聚甲基丙烯酸甲酯(PMMA)作为人工晶体更佳材料,已在临床上广泛使用。硅凝胶、玻璃虽有应用,但尚不普遍。

近年来又推出一些新的人工晶体材料,如水凝胶、聚碳酸酯、聚硅氧烷等。以硅凝胶、水凝胶为材料可制成折叠式人工晶体,以便通过3.5mm的小切口植入眼内。

晶体材料制备的 *** 有哪些,简述其原理

人工晶体的制备就是把组成晶体的基元(原子、分子或离子)解离后又重新使它们组合的过程。按照晶体组分解离手段的不同,人工晶体的制备主要有三大类:熔体法、溶液法和气相法。

一种晶体选择何种技术生长,取决于晶体的物理、化学性质和应用要求。选择的一般原则是:

♣有利于快速生长出具有较高实用价值、符合一定技术要求的晶体;

♣有利于提高晶体的完整性,严格控制晶体中的杂质和缺陷;

♣有利于提高晶体的利用率、降低成本。生长大尺寸的晶体始终是晶体生长工作者追求的

重要目标;

♣有利于晶体的后加工和器件化;

♣有利于晶体生长的重复性和产业化;

⒈溶液法生长

溶液法的基本原理是将原料(溶质)溶解在溶剂(如水)中,采取适当的措施造成溶液的过饱和状态,使晶体在其中生长。具体地包含有水溶液法、水热法与助熔剂法等。

⑴降温法

基本原理:

利用物质大的溶解度和较大的正溶解度温度系数,在晶体生长过程中逐渐降低温度,使析出的溶质不断在晶体上生长。

关键:晶体生长过程中掌握适合的降温速度,使溶液始终处在亚稳态区内并维持适宜的过

饱和度。

要求:物质溶解度温度系数不低于1.5g/kg℃。

⑵恒温蒸发法

基本原理:

将溶剂不断蒸发,使溶液保持在过饱和状态,从而使晶体不断生长。

特点:

比较适合于溶解度较大而溶解度温度系数很小或者是具有负温度系数的物质。与流动法一样也是在恒温条件下进行的。

(3)温差水热法

基本原理:

使用特殊设计的装置,人为地创造一个高温高压环境,由于高温高压下水的解离常数增大、黏度大大降低、水分子和离子的活动性增加,可使那些在通常条件下不溶或难溶于水的物质溶解度、水解程度极大提高,从而快速反应合成新的产物。

晶体材料和非晶体材料的定义分别是什么?

1、晶体材料:由结晶物质构成的固体材料。其所含的原子、离子、分子或粒子集团等具有周期性的规则排列。

2.晶体材料国家重点实验室晶体生长 *** 齐全,结构、性能表征与器件 *** 设备先进;科研工作已由以前单纯地跟踪、模仿逐步发展到今天在材料设计、制备及相关技术等方面颇具创新能力,整体研究实力处于国际先进水平,同时逐步形成优秀的研究群体;研究领域由体块晶体向低维化方向拓展,研究层次由宏观向介观、微观扩展。

2、非晶体材料也叫无定形或玻璃态材料, 这是一大类刚性固体,具有和晶态物质可相比较的高硬度和高粘滞系数(一般在10泊,即10帕·秒以上,是典型流体的粘滞系数的10倍)。

① 只存在小区间内的短程序,而没有任何长程序;波矢 k不再是一个描述运动状态的好量子数(见固体的能带)。

② 它的电子衍射、中子衍射和 X射线衍射图是由较宽的晕和弥散的环组成;用电子显微镜看不到任何由晶粒间界、晶体缺陷等形成的衍衬反差。

③ 任何体系的非晶态固体与其对应的晶态材料相比,都是亚稳态。当连续升温时,在某个很窄的温区内,会发生明显的结构变化,从非晶态转变为晶态,这个晶化过程主要取决于材料的原子扩散系数、界面能和熔解熵(见结构弛豫)。

光学晶体有哪些

光学晶体(optical

crystal)用作光学介质材料的晶体材料。主要用于 *** 紫外和红外区域窗口、透镜和棱镜。按晶体结构分为单晶和多晶。由于单晶材料具有高的晶体完整性和光透过率,以及低的插入损耗,因此常用的光学晶体以单晶为主。

编辑本段光学单晶种类

卤化物单晶

卤化物单晶分为氟化物单晶,溴、氯、碘的化合物单晶,铊的卤化物单晶。氟化物单晶在紫外、可见和红外波段光谱区均有较高的透过率、低折射率及低光反射系数;缺点是膨胀系数大、热导率小、抗冲击性能差。溴、氯、碘的化合物单晶能透过很宽的红外波段,其熔点低,易于制成大尺寸单晶;缺点是易潮解、硬度低、力学性能差。铊的卤化物单晶也具有很宽的红外光谱透过波段,微溶于水,是一种在较低温度下使用的探测器窗口和透镜材料;缺点是有冷流变性,易受热腐蚀,有毒性。

氧化物单晶

氧化物单晶主要有蓝宝石(Al2O3)、水晶(SiO2)、氧化镁(MgO)和金红石(TiO2)。与卤化物单晶相比,其熔点高、化学稳定性好,在可见和近红外光谱区透过性能良好。用于制造从紫外到红外光谱区的各种光学元件。

半导体单晶

半导体单晶有单质晶体(如锗单晶、硅单晶),Ⅱ-Ⅵ族半导体单晶,Ⅲ-Ⅴ族半导体单晶和金刚石。金刚石是光谱透过波段最长的晶体,可延长到远红外区,并具有较高的熔点、高硬度、优良的物理性能和化学稳定性。半导体单晶可用作红外窗口材料、红外滤光片及其他光学元件。

编辑本段光学多晶材料

光学多晶材料主要是热压光学多晶,即采用热压烧结工艺获得的多晶材料。主要有氧化物热压多晶、氟化物热压多晶、半导体热压多晶。热压光学多晶除具有优良的透光性外,还具有高强度、耐高温、耐腐蚀和耐冲击等优良力学、物理性能,可作各种特殊需要的光学元件和

玻璃材料与晶体材料的主要区别是什么?

在微观层次上,玻璃材料晶粒不是特定的形状,晶体材料晶粒是有特定的形状,是布拉伐格子,玻璃材料没有固定的熔点温度,而晶体材料有固定的熔点。玻璃材料可以融化循环利用,而晶体材料不可以。。。

好了,本文到此结束,如果可以帮助到大家,还望关注本站哦!

支付宝转账赞助

支付宝扫一扫赞助

微信转账赞助

微信扫一扫赞助

留言与评论(共有 0 条评论)
   
验证码: